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Chapter 6: Application of Derivatives I

Learning Objectives:
(1) Apply L’Hôpital’s rule to find limits of indeterminate forms.
(2) Discuss increasing and decreasing functions.
(3) Define critical points and relative/absolute extrema of real functions of 1 variable.
(4) Use the first derivative test to study relative/absolute extrema of functions.

6.1 Limits of indeterminate forms and L’Hôpital’s rule

Recall the Remark in the end of Section 2.4 regarding exceptional cases of limits, which can
not be computed using the algebraic rules of limits in Proposition 2, but the limits might still
exist. Limits of this type are said to be of indeterminate forms.

6.1.1 Limits of indeterminate forms
0

0
,
∞
∞

Consider lim
x→a

f(x)

g(x)
,

1. if lim
x→a

f(x) = A, lim
x→b

g(x) = B 6= 0, A,B ∈ R, then by the quotient rule,

lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
=
A

B
.

2. if lim
x→a

f(x) = lim
x→a

g(x) = 0 (±∞), then the quotient rule is not applicable. Limits of

this type are said to be of indeterminate form type
0

0
or type ∞∞

For example,

lim
x→1

x2 − 1

x3 − 1
,

(
type

0

0

)
lim

x→+∞

x+ 1

2x+ 3
, lim

x→+∞

−x+ 1

2x3
,
(

type
∞
∞

)
.
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Theorem 6.1.1 (L’Hôpital’s rule for limits of types
0

0
,
∞
∞

).

Let f(x), g(x) be differentiable and suppose that g′(x) 6= 0 near the point a.

If
lim
x→a

f(x) = lim
x→a

g(x) = 0 or lim
x→a

f(x) = lim
x→a

g(x) = ±∞,

then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Remark. (a) An intuitive explanation: When f(a) ≈ 0 ≈ g(a),

f(x)

g(x)
≈ f(x)− f(a)
g(x)− g(a)

=

f(x)−f(a)
x−a

g(x)−g(a)
x−a

.

(b) The statement of the theorem still holds if “x→ a” is replaced by “x→ ±∞” or “x→ a±”.
It also holds if limx→a f(x) = ±∞ lim

x→a
g(x) = ∓∞. (Use limx→a

f(x)
g(x) = − limx→a

−f(x)
g(x) and

apply the theorem to limx→a
−f(x)
g(x) .)

Example 6.1.1. Limits of type
0

0

1.

lim
x→1

x2 − 1

x3 − 1
(check condition 1:

0

0
)

= lim
x→1

2x

3x2
(check condition 2: this limit is

2

3
)

=
2

3
.

Remark. Alternatively, use the “canceling common factors” trick in the previous chap-
ters.

2.

lim
x→1

ex − e√
x− 1

(the limit is of type
0

0
)

= lim
x→1

ex

1
2x
− 1

2

=2e.
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3.

lim
x→0+

ln(1 + x)

x2
(type

0

0
)

= lim
x→0+

1
1+x

2x

=+∞.

Example 6.1.2. Limits of type
∞
∞

1.

lim
x→+∞

−x+ 1

2x+ 3
(type

∞
∞

)

= lim
x→+∞

−1
2

=− 1

2
.

Remark. The same result can be obtained by dividing both the numerator and the
denominator by x.

2.

lim
x→+∞

lnx

xn
, n ∈ N (type

∞
∞

)

= lim
x→+∞

1
x

nxn−1

= lim
x→+∞

1

nxn

=0.

Remark.

1. L’Hôpital’s rule can NOT be applied for determinate form.

For example, lim
x→1

x+ 1

x+ 2
=

2

3
, but lim

x→1

(x+ 1)′

(x+ 2)′
=

1

1
= 1.

2. If lim
x→a

f ′(x)

g′(x)
is still

0

0
,
∞
∞

, then repeat L’Hôpital’s rule.

3. L’Hôpital’s rule can be used to justify the previous assertion that as x→∞, higher de-
gree polynomials “grows faster” than lower degree polynomials; exponential functions
grow faster than any polynomials; log functions grow slower than any polynomials.
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Exercise 6.1.1.

1. lim
x→1

x− 1

lnx
= 1

2. lim
x→+∞

xn

ex
= 0

Example 6.1.3. (Applying L’Hôpital’s rule twice.)

lim
x→0

ex − e−x − 2x

x2
(type

0

0
)

= lim
x→0

ex + e−x − 2

2x
( still of type

0

0
)

= lim
x→0

ex − e−x

2

=0

6.1.2 Other Indeterminate Forms: 0 · ∞,∞−∞, 00, 1∞,∞0

All these forms can be converted to forms of types 0
0 or ∞∞ .

Example 6.1.4. Type 0 · ∞

lim
x→0+

(x lnx) (0 · ∞)

= lim
x→0+

lnx
1
x

(
∞
∞

)

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

(−x)

=0.
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Example 6.1.5. Type∞−∞

lim
x→0+

(
1

x
− 1

ex − 1

)
(∞−∞)

= lim
x→0+

ex − 1− x
x(ex − 1)

(
0

0
)

= lim
x→0+

ex − 1

ex − 1 + xex
( still

0

0
)

= lim
x→0+

ex

ex + ex + xex

=
1

2
.

Example 6.1.6. Types 1∞,∞0, 00

Trick: fg = eln fg
= eg ln f

1.

lim
x→+∞

x
1
x (∞0)

= lim
x→+∞

eln(x
1
x )

= lim
x→+∞

e
1
x
lnx

=e
lim

x→+∞

1

x
lnx

,

lim
x→+∞

1

x
lnx (0 · ∞)

= lim
x→+∞

lnx

x
(
∞
∞

)

= lim
x→+∞

1
x

1

=0.

So,
lim

x→+∞
x

1
x = e0 = 1.

2.

lim
x→1+

x
1

1−x (1∞)

= lim
x→1+

e
1

1−x
lnx

=e
lim

x→1+

lnx

1− x ,
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lim
x→1+

lnx

1− x
(
0

0
)

= lim
x→1+

1
x

−1
=− 1.

So,
lim

x→1+
x

1
1−x = e−1.

3.

lim
x→0+

xx (00)

= lim
x→0+

ex lnx

=e
lim

x→0+
x lnx

,

lim
x→0+

x lnx (0 · ∞)

= lim
x→0+

lnx
1
x

(
∞
∞

)

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

(−x)

=0.

So,
lim

x→0+
xx = e0 = 1.

6.2 Monotonicity of Functions and the First Derivative Test

6.2.1 Monotonicity: Increasing/Decreasing Functions

Definition 6.2.1. Let f(x) be a function defined on (a, b). Then

1. f(x) is increasing (or positively monotone) on the interval if f(x2) ≥ f(x1) whenever
x2 > x1.

2. f(x) is strictly increasing (or strictly positive monotone) on the interval if f(x2) >
f(x1) whenever x2 > x1.
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3. f(x) is decreasing (or negatively monotone) on the interval if f(x2) ≤ f(x1) whenever
x2 < x1.

4. f(x) is strictly decreasing (or strictly negative monotone) on the interval if f(x2) <
f(x) whenever x2 > x1.

5. f(x) is (strictly) monotone if f(x) is either (strictly) positively monotone or (strictly)
negatively monotone.

Caveat! The preceding definition is the mathematicians’ definition of increasing/decreasing
functions. However, some calculus texts define increasing/decreasing functions differently,
e.g. [Hoffmann et al.], where “increasing/descreasing functions” refer to the “strictly
increasing/descreasing functions” defined above. Similarly, some text refers to what we
called “strictly monotone/monotone” above as “monotone/weakly monotone”.

Theorem 6.2.1. Let f be a differentiable function on (a, b).

1. If f ′(x) ≥ 0 for all x ∈ (a, b), then f(x) is an increasing function.

2. If f ′(x) > 0 for all x ∈ (a, b), then f(x) is a strictly increasing function on (a, b).

3. If f ′(x) ≤ 0 for all x ∈ (a, b), then f(x) is a decreasing function.

4. If f ′(x) < 0 for all x ∈ (a, b), then f(x) is a strictly decreasing function on (a, b).

Example 6.2.1. Show that f(x) = ex − x− 1 is a strictly increasing function on (0,∞).

Solution. f ′(x) = ex − 1 > 1− 1 = 0. So f(x) is a strictly increasing function. �

Remark. Because f(x) is a strictly increasing function, f(x) > f(0) = 0 for x > 0, i.e.

ex > 1 + x, for x > 0.
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Procedure to determine intervals of increase/decrease of f

1. Find all c such that f ′(c) = 0 or f ′(c) is undefined. Divide the line into several intervals.

2. For each intervals (a, b) obtained in the previous step.

(a) If f ′(x) > 0, f(x) is a strictly increasing function (↑) on (a, b).

(b) If f ′(x) < 0, f(x) is a decreasing function (↓) on (a, b).

Example 6.2.2. Find the intervals in which the function

f(x) = 2x3 + 3x2 − 12x− 7

is strictly increasing/strictly decreasing.

Solution.
f ′(x) = 6x2 + 6x− 12 = 6(x+ 2)(x− 1) = 0 ⇒ x = −2, 1.

So we have 3 intervals: (−∞,−2), (−2, 1), (1,∞).

In (−∞,−1), x+ 1 < 0, x− 1 < 0, so f ′(x) > 0.
In (−1, 1), x+ 1 > 0, x− 1 < 0, so f ′(x) < 0.
In (1,+∞), x+ 1 > 0, x− 1 > 0, so f ′(x) > 0.

x (−∞,−2) −2 (−2, 1) 1 (1,+∞)

f ′(x) + 0 − 0 +

monotonicity ↑ ↓ ↑

�
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Figure 6.1: y = 2x3 + 3x2 − 12x− 7

Exercise 6.2.1. Find the intervals of strict increase and strict decrease of the function

f(x) = x7 − 2x5 + x3.

Solution.

f ′(x) = 7x6−10x4+3x2 = x2(7x2−3)(x2−1) = 0 ⇒ x = 0,±1 and ±
√

3

7
≈ ±0.654654.

x (−∞,−1) (−1,−
√

3
7) (−

√
3
7 , 0) (0,

√
3
7) (

√
3
7 , 1) (1,+∞)

f ′(x) + − + + − +

monotonicity ↑ ↓ ↑ ↑ ↓ ↑

Figure 6.2: y = x7 − 2x5 + x3
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�

Definition 6.2.2. Let f(x) be a real-valued function defined on (a, b). A number c ∈ (a, b) is
called a critical point of f if f ′(c) = 0 or f ′(c) does not exist.
The corresponding value f(c) is called a critical value for f(x).

Remark. The notion of critical points applies to more general functions, e.g. real functions
of several variables, complex functions etc. A critical point always lies in the domain of
the function. In the special case of real-valued functions of a single real variable, a critical
point is a real number; therefore it is also called a critical number. Let f(x) be a real-valued
function of a single real variable, and c ∈ R be a critical point of f . Let C ⊂ R2 be the graph
of f in the x− y plane. The point (c, f(c)) ∈ C is a critical point of the function πy : C → R
given by (x, y) 7→ y.

Example 6.2.3.
f(x) = |x|.

We have proved

f ′(x) =


−1, x < 0,

does not exist, x = 0,

1, x > 0.

⇒ critical number: x = 0; corresponding critical value: 0

x (−∞, 0) 0 (0,+∞)

f ′(x) − 0 +

monotonicity ↓ ↑

Example 6.2.4. f(x) = x4 − 4x3. Find all critical points and increasing & decreasing
intervals.

Solution.
f ′(x) = 4x3 − 12x2 = 4x2(x− 3) = 0 ⇒ x = 0, 3.

critical points: x = 0, 3

corresponding critical values: f(0) = 0, f(3) = −27

x (−∞, 0) 0 (0, 3) 3 (3,+∞)

f ′(x) − 0 − 0 +

monotonicity ↓ ↓ ↑

�



Chapter 6: Application of Derivatives I 6-11

6.2.2 Maxima & Minima of Functions

Definition 6.2.3. Let f(x) be a real-valued function with domain I. We say

1. f(x) has a relative maximum (or local maximum) at x = c if f(c) ≥ f(x) for all
x ∈ I near c.

2. f(x) has a global maximum (or absolute maximum) at x = c if f(c) ≥ f(x) for all
x ∈ I.

Similar definition for relative/global minimum.

Both maximum and minimum are called an extremum.

Remark. Global extremum ⇒ Local extremum
But Global extremum : Local extremum

Remark. There is some confusion in the literature regarding whether a (local or global)
maximum/minimum of a function refers to an element in the domain or its corresponding
value (in the range). For most literature, the (absolute) maximum of a real function f(x)
refers to the value: M ∈ R is said to be the (absolute) maximum if there exists an element c in
the domain D of f such that f(x) ≤ f(c) ∀x ∈ D. To be clear, say that M is an (absolute)
maximum value of f ; and f attains its (absolute) maximum at c. Say e.g. f has local maxima
at x1, x2, . . . ∈ D, with corresponding values f(x1), f(x2), . . .. Similarly for the notions of
(absolute/local) minimum.

Remark. Absolute maxima/minima may not exist. Consider the e.g. the function f : (0, 1]→
R given by f(x) = x. This f has an absolute maximum but has no absolute minimum. A
general notion is supremum/infimum. In the above example, the supremum of f is 1 and its
infimum is 0.
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Question I: How to find relative extrema?

Theorem 6.2.2 (First Derivative Test: Relative Extrema).

Let f(x) be a continuous function which is differentiable where x 6= c. Then

1. f(x) attains a relative maximum at x = c if near the point c,

f ′(x) > 0 for x < c; f ′(x) < 0 for x > c.

2. f(x) attains a relative minimum at x = c if near the point c,

f ′(x) < 0 for x < c; f ′(x) > 0 for x > c.

3. f(x) attains no relative extremum at x = c if near the point c, f ′(x) has the same sign on
two sides of c.

Property
Sign of f ′(x)
to the left of c

Sign of f ′(x)
to the right of c

Relative maximum + −
Relative minimum − +

Not a relative extremum + +

Not a relative extremum − −
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Theorem 6.2.3. Let c ∈ (a, b) and let f be a continuous function on (a, b) such that f ′ exists
and is continuous on (a, b)\{c}. Then f attains a relative extremum at x = c ⇒ c is a
critical number, i.e. f ′(c) = 0 or f ′(c) does not exist.

Remark. f attains a relative extremum at x = c : c is a critical number.
For example, f(x) = x3, f ′(x) = 3x2, so x = 0 is a critical number. But f ′(x) > 0 on two
sides of x = 0, so f does not have a relative extremum at 0.

Example 6.2.5. Let
f(x) = 2x3 + 3x2 − 12x− 7.

Find all its relative maxima and relative minima.

Solution. Refer to the answer of Example 6.2.2, f ′(x) = 6x2 + 6x− 12. The critical numbers
are solutions of f ′(x) = 0, i.e x = −2 and x = 1.

x (−∞,−2) −2 (−2, 1) 1 (1,+∞)

f ′(x) + 0 − 0 +

(point where a relative maximum occurs, corresponding value): (−2, f(−2)) = (−2, 13)
(point where a relative minimum occurs, corresponding value): (1, f(1)) = (1, 14)

�

Example 6.2.6.

1. For Example 6.2.3 f(x) = |x|.
One critical number: x = 0, One relative minimum at 0, with corresponding value 0.

2. For example 6.2.4 f(x) = x4 − 4x3.
critical numbers: x = 0, 3, one relative minimum at 3, with corresponding value
−27.

Exercise 6.2.2. Let
f(x) = x7 − 2x5 + x3.

(see Exercise 6.2.1) Find all relative maxima and relative minima of f .

Answer:
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(point where a relative maximum occurs, corresponding value) :

(−1, f(−1)) = (−1, 0); (
√

3
7 , f(

√
3
7) ≈ (0.655, 0.092)

(point where a relative minimum occurs, corresponding value) :

(−
√

3
7 , f(−

√
3
7)) ≈ (−0.655,−0.092); (1, f(1)) = (1, 0).

Note that f has no relative extremum at 0.

Question II: How to find absolute Max/Min?

Theorem 6.2.4. Suppose f : [a, b]→ R is a continuous function, then the absolute maximum
point and absolute minimum point exist for the graph of f (Theorem 3.2.2 Extreme Value
Theorem).

Remark. Note that the preceding theorem applies only when the domain of f is a closed finite
interval!

Procedures to find absolute max/min of continuous function f on [a, b]

1. Find all the critical numbers c1, c2, . . . , in (a, b).

2. Compute the values f(a), f(b), f(c1), f(c2), . . . ,
The maximum value corresponds to the absolute max.
The minimum value corresponds to the absolute min.

Example 6.2.7. Find the absolute maximum and absolute minimum of f(x) = x5 − 80x on
[−3, 4].

Solution. Since f(x) is continuous on [−3, 4], the absolute max/min can be reached by
extreme value theorem.

f ′(x) = 5x4 − 80 = 0 ⇒ x = −2, 2.

Compute

f(−2) = 128, f(2) = −128,
f(−3) = −3, f(4) = 704.

The absolute minimum is −128, attained at x = 2; the absolute maximum is 704, attained at
x = 4.

�
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Figure 6.3: y = x5 − 80x over [−3, 4]


